(+) 188 1699 6168 hongrunplastics.com

Clyrell RC5003 Provisional Data Sheet

Polypropylene, Random Copolymer

Product Description

Clyrell RC5003 is a developmental random coplymer Polypropylene manufactured using the Spheripol process. With its high gloss, excellent transparency and good flow, combined with its balance of rigidity and impact, this grade is suitable for injection molding. Potential end use applications include moulding of housewares and containers. It can also be evaluated for Injection Stretch Blow Moulding of bottles.

Product Characteristics

Status Commercial: Active

Test Method used ASTM

Availability Asia-Pacific, Australia/NZ, Africa-Middle East

Processing Methods Injection Molding

Features High Clarity, Random Copolymer, Good Flow, High Gloss

, Good Strength

Typical Customer Applications Clear Containers, Housewares

Typical Properties	Method	Value	Unit
Physical			
Density -Specific Gravity	ASTM D 792	0.9	g/cm³
Melt Flow Rate (230°C/2.16kg)	ASTM D 1238	13	g/10 min
Note: ASTM D1238L			
Mechanical			
Flexural Modulus	ASTM D 790	11500	kg/cm²
Tensile Strength @ Yield	ASTM D 638	300	kg/cm²
Tensile Elongation @ Yield	ASTM D 638	11	%
Impact			
Notched Izod Impact	ASTM D 256		
(23 °C)		5	kg-cm/cm
(-20 °C)		2	kg-cm/cm
Hardness			
Rockwell Hardness (R Scale)	ASTM D 785	90	

Notes

 $\label{typical properties: not to be construed as specifications.} % \[\begin{array}{c} (x,y) & (x,y) \\ (x,y) & (y,y) \\$